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A vector is a quantity that has both magnitude and direction. Vectors are used everywhere in physics to
describe displacement (such as “37 meters northwest”), force (“12 pounds down”), etc. We will use symbols
like ~v and ~w represent vectors, and symbols like c represent ordinary numbers, which we call scalars.

Let’s begin by describing two-dimensional vectors using the physical notion of displacement. Each vector
~v is a pair 〈v1, v2〉 of numbers. This ~v represents a displacement of v1 units in the x-direction and v2 units in
the y-direction. The length (or magnitude) of ~v is denoted |~v|. By the Pythagorean theorem, |~v| =
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1
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For example, 〈3, 4〉 means “move 3 units to the right and 4 up”. The total displacement is
√

32 + 42 = 5, in
a vaguely up-right direction. Similarly, 〈−2, π〉 represents a displacement of “2 left and π up”.

There are two basic operations on vectors: addition and scalar multiplication. To add two vectors ~v
and ~w, you simply add their components independently:

〈v1, v2〉 + 〈w1, w2〉 = 〈v1 + w1, v2 + w2〉.
Obviously, adding 〈0, 0〉 to a vector doesn’t change it; 〈0, 0〉 is the zero vector, ~0. Now, to muliply a vector
~v by a scalar c, you multiply c across the components of ~v:

c〈v1, v2〉 = 〈cv1, cv2〉.
For example, 1~v = ~v and 0~v = ~0. The effect of scalar multiplication is to stretch ~v by a factor of c. Vectors
of length 1 are called unit vectors. If ~v 6= ~0, then ~v/|~v| is the unit vector pointing in the direction of ~v.
(When we write ~v/c, we mean (1/c)~v.) The negation −~v = −1~v is the vector with the same length as ~v, but
pointing in the opposite direction. Notice that ~v +−~v = ~0; we define vector subtraction by ~v − ~w = ~v +−~w.

One might be tempted to define vector multiplication as 〈v1, v2〉〈w1, w2〉 = 〈v1w1, v2w2〉, but it turns
out that this operation is neither useful nor interesting. What is useful is the dot product,

〈v1, v2〉 · 〈w1, w2〉 = v1w1 + v2w2.

Notice that the result is a scalar, not a vector! The dot product is important for several related reasons:
• The length of ~v equals

√
~v · ~v. In other words, |~v|2 = ~v · ~v.

• If θ is the angle between ~v and ~w, then ~v · ~w = |~v||~w| cos(θ). If |~v| = |~w| = 1, then θ = cos−1(~v · ~w).
• ~v · ~w = 0 if and only if ~v and ~w are perpendicular (or one of them is zero).
All of this generalizes to higher dimensions. For any positive integer n, we define an n-dimensional

vector ~v to be an ordered n-tuple of numbers, 〈v1, v2, v3, . . . , vn〉. The operations are

~v + ~w = 〈v1, . . . , vn〉 + 〈w1, . . . , wn〉 = 〈v1 + w1, . . . , vn + wn〉,
c~v = c〈v1, . . . , vn〉 = 〈cv1, . . . , cvn〉,

~v · ~w = 〈v1, . . . , vn〉 · 〈w1, . . . , wn〉 = v1w1 + . . . + vnwn.

The zero vector is 〈0, 0, 0, . . . , 0〉. Vector addition is associative and commutative. Also, vectors enjoy
• Scalar Distributivity: c(~v + ~w) = c~v + c~w.
• Scalar Associativity: (c~v) · ~w = c(~v · ~w).
• Commutativity: ~v · ~w = ~w · ~v.
• Distributivity: ~u · (~v + ~w) = ~u · ~v + ~u · ~w.

Although n-dimensional space is hard to visualize for n > 3, vectors make it easy to talk about. For example,
the length of the vector ~v is

√
~v · ~v, and the angle between two unit vectors ~v and ~w is cos−1(~v · ~w).

A peculiar feature of three-dimensional vectors is the cross product, defined as

〈v1, v2, v3〉 × 〈w1, w2, w3〉 = 〈v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1〉.
Notice that the result is a vector, not a scalar. Here are some of its properties.

• Scalar Associativity: (c~v) × ~w = c(~v × ~w).
• Anticommutativity: ~v × ~w = −~w × ~v.
• Distributivity: ~u × (~v + ~w) = ~u × ~v + ~u × ~w.
• ~v × ~w is perpendicular to both ~v and ~w.
• If θ is the angle between ~v and ~w, then |~v × ~w| = |~v||~w| sin(θ).
• (~u × ~v) · ~w = ~u · (~v × ~w).
• ~u × (~v × ~w) = (~w × ~v) × ~u = (~u · ~w)~v − (~u · ~v)~w.


